Journal of Organometallic Chemistry, 408 (1991) 343-355 Elsevier Sequoia S.A., Lausanne JOM 21526

Organo-Übergangsmetall-Chemie hochfluorierter Ligand-Systeme

XIII *. Die Synthese und EPR-spektroskopische Charakterisierung von $Cp_2VCl(AsF_6)$ und weiterer Vanadocen(IV)hexafluoropnikogenat-Spezies sowie die HF-katalysierte Oxidationsreaktion zu kationischen Vanadocenium(V)-Komplexen: Struktur von $[Cp_2VCl_2]^+[AsF_6]^-$

Frank H. Görlitz **, Petra K. Gowik, Thomas M. Klapötke *

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, W-1000 Berlin 12 (Deutschland)

Deming Wang ***

Department of Molecular Spectroscopy, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands)

Robert Meier *** und J. v. Welzen ***

DSM Research, 6160 MD Geleen (Netherlands)

(Eingegangen den 2. November 1990)

Abstract

The EPR spectra of $Cp_2V(AsF_6)_2$, $Cp_2V(SbF_6)_2$ and $Cp_2VCl(AsF_6)$ were recorded with polycrystalline samples and in THF solution and in addition the spectrum of $Cp_2V(AsF_6)$ was recorded in dilute CH_2Cl_2 solution. Whereas in the reaction of Cp_2VCl_2 with pure AsF₅ chloride is oxidized to yield Cl_2 , AsF₃ and $Cp_2VCl(AsF_6)$, traces of anhydrous hydrogen fluoride facilitate the (thermodynamically favoured) oxidation of vanadium to give $[Cp_2VCl_2]^+[AsF_6]^-$ in 98% yield and AsF₃. Similarly $Cp_2V(AsF_6)_2$ is oxidized by AsF₅ in the presence of HF to yield $[Cp_2V(AsF_6)_2]^+[AsF_6]^-$ and AsF₃, but $Cp_2V(AsF_6)_2$ does not react with pure AsF₅ in SO₂ at room temperature. The new species $Cp_2VCl_2(AsF_6)$ was characterized by chemical analysis, vibrational and EPR spectroscopy. The structure of $[Cp_2VCl_2]^+[AsF_6]^-$ has been determined by an X-ray diffraction study. The vanadocenium salt crystallizes in the monoclinic space group $P2_1$ with cell constants a = 6.896(1), b = 8.548(4), c = 12.044(4) Å, $\beta = 104.14(2)^\circ$, V = 688.7 Å³, Z = 2 and R = 0.038.

^{*} XII. Mitteilung siehe Lit. [1].

^{**} Röntgenstrukturanalyse.

^{***} EPR-Spektroskopie.

Zusammenfassung

Die EPR-Spektren von Cp₂V(AsF₆)₂, Cp₂V(SbF₆)₂ und Cp₂VCl(AsF₆) wurden an polykristallinen Proben und in THF-Lösung aufgenommen und im Fall von Cp₂V(AsF₆) zusätzlich in verdünnter CH₂Cl₂-Lösung. Während bei der Umsetzung von Cp₂VCl₂ mit reinem AsF₅ das Chlorid oxidiert wird und Cl₂, AsF₃ und Cp₂VCl(AsF₆) als Produkte erhalten werden, führt die Anwesenheit von Spuren von wasserfreiem Fluorwasserstoff zur (thermodynamisch begünstigteren) Oxidation des Vanadiums und liefert [Cp₂VCl₂]⁺ [AsF₆]⁻ neben AsF₃ in 98% Ausbeute. Analog hierzu wird Cp₂V(AsF₆)₂ durch AsF₅ in Gegenwart von HF zu [Cp₂V(AsF₆)₂]⁺ [AsF₆]⁻ oxidiert, während Cp₂V(AsF₆)₂ mit reinem AsF₅ bei Raumtemperatur in SO₂ keinerlei Reaktion zeigt. Die neue Komplexverbindung Cp₂VCl(AsF₆) ist durch Elementaranalyse, Schwingungs- und EPR-Spektroskopie charakterisiert. Die Struktur von [Cp₂VCl₂]⁺ [AsF₆]⁻ wurde mittels Röntgenbeugung am Einkristall bestimmt. Die Vanadocenium-Spezies kristallisiert in der monoklinen Raumgruppe P2₁ mit den Zell-Konstanten a = 6.896(1), b = 8.548(4), c = 12.044(4) Å, $\beta = 104.14(2)^\circ$, V = 688.7 Å³, Z = 2 und R = 0.038.

Einführung

Im Rahmen unserer Untersuchungen auf dem Gebiet der Metallocen-Chemie hochfluorierter Ligand-Systeme haben wir bereits über die Synthese und strukturelle Charakterisierung der paramagnetischen Spezies $Cp_2V(EF_6)_2$ (E = As, 2; Sb, 3) sowie der diamagnetischen Vanadocenium(V)-Komplexe $[Cp_2VX_2]^+[AsF_6]^-$ (X = Cl, 5; AsF₆, 6) berichtet [2,3]. Die kationischen Vanadocenium(V)-Derivate 5 und 6 konnten dabei in nahezu quantitativer Ausbeute durch direkte Oxidation der neutralen Vanadocen(IV)-Spezies Cp_2VCl_2 (1) bzw. 2 mittels AsF₅ als Oxidans in SO₂ dargestellt werden (Gl. 1) [2]. Hierzu gelangte AsF₅ nach einstufiger Kondensation in handelsüblicher Reinheit zum Einsatz.

$$2 \operatorname{Cp}_2 VX_2 + 3 \operatorname{AsF}_5 \rightarrow 2 [\operatorname{Cp}_2 VX_2]^+ [\operatorname{AsF}_6]^- + \operatorname{AsF}_3$$
(1)
(X = Cl, 1; AsF₆, 2) (X = Cl, 5; AsF₆, 6)

Diese Oxidation (Gl. 1), bei der As F_5 teilweise zu As F_3 reduziert wird (Gl. 2) [4], konnte darüberhinaus auf der Basis eines einfachen Born-Haber-Zyklus als thermodynamisch erlaubt abgeschätzt werden [2].

$$3 \operatorname{AsF}_5 + 2 e^- \rightarrow 2 \operatorname{AsF}_6^- + \operatorname{AsF}_3$$
(2)

Überraschenderweise stellten wir bei erneuten Versuchen zur Darstellung von 5 und 6, bei denen AsF₅ in höherer Reinheit zum Einsatz gelangte, fest, daß 1 mit sehr reinem AsF₅ nicht gemäß Gl. 1 zu 5 reagiert, sondern vielmehr zur Synthese des bislang unbekannten, paramagnetischen Komplexmoleküls Cp₂VCl(AsF₆) (4) in über 97% Ausbeute führt. Dieses Ergebnis führte zu der Annahme, daß in den vorangegangenen Arbeiten katalytische Mengen einer Verunreinigung zur Darstellung der (thermodynamisch begünstigteren) [2] Spezies 5 und 6 geführt haben, während die Reaktion gemäß Gl. 1 kinetisch gehemmt ist. Dies veranlaßte uns, das Reaktionsverhalten von Vanadocen(IV)-Komplexen gegenüber AsF₅ nochmals eingehender zu untersuchen.

Ergebnisse und Diskussion

Chemische Aspekte: HF als "Katalysator"

Während wir früher die Oxidation von 1 mit As F_5 gemäß Gl. 1 zu 5 beobachtet haben, führt die Umsetzung von 1 mit sehr reinem As F_5 (siehe Experimentelles)

unter Beibehaltung der Stöchiometrie gemäß Gl. 3 zur Oxidation des Chlorids zu elementarem Chlor und damit zur Darstellung des neuen Vanadocen(IV)-Komplexes 4.

$$2 \operatorname{Cp}_2 \operatorname{VCl}_2 + 3 \operatorname{AsF}_5 \rightarrow 2 \operatorname{Cp}_2 \operatorname{VCl}(\operatorname{AsF}_6) + \operatorname{AsF}_3 + \operatorname{Cl}_2$$
(3)
(1)
(4)

Hiermit in Einklang ist die Tatsache, daß 2 mit reinem AsF₅ keine Reaktion zeigt und daß 2 auch auf dem bisher unbekannten Reaktionsweg aus 1 und AsF₅ gemäß Gl. 4 zugänglich ist.

$$1 + 3 \operatorname{AsF}_5 \rightarrow 2 + \operatorname{Cl}_2 + \operatorname{AsF}_3 \tag{4}$$

Auf der Suche nach einem Stoff, der bereits in katalytischen Mengen als Reaktionsbegünstiger (engl. facilitator) [5] zur Synthese der diamagnetischen Vanadocenium(V)-Spezies 5 und 6 geführt haben könnte, haben wir folgende Substanzen auf ihre Wirksamkeit hin untersucht: I2, Br2, F2, AsF3 und HF. Es konnte eindeutig gezeigt werden, daß ausschließlich HF (und nicht F2) die Reaktion gemäß Gl. 1 ermöglicht. Da aber nach der Darstellung (jeweils in über 95% Ausbeute) von 5 und 6 gemäß Gl. 1 mit reinem AsF₅ in Gegenwart von wasserfreiem HF das HF bislang nicht wieder nachgewiesen werden konnte, bezeichnen wir diese Komponente als "Facilitator" [5] und nicht als "Katalysator". Da für die Experimente der vorliegenden Arbeit ein neuer Zylinder AsF5, der darüberhinaus von einem anderen Hersteller stammte, benützt wurde, liegt nahe, daß bei unseren früheren Versuchen geringe Mengen von HF mit eingeschleppt wurden, sodaß stets zufällig der "richtige" Facilitator zur Oxidation des Vanadiums anwesend war. Somit kann zusammengefaßt werden, daß 1 mit reinem AsF5 je nach Stöchiometrie in SO₂ bei Raumtemperatur zu 2 (Gl. 4) bzw. 4 (Gl. 3) reagiert, während in Gegenwart von katalytischen Mengen wasserfreien Fluorwasserstoffs 1 gemäß Gl. 1 zu 5 bzw. 2 zu 6 oxidiert werden kann.

Mechanistisch kann eine HF-katalysierte Reaktion leicht verstanden werden, wenn als erster Schritt die Bildung der Supersäure $HAsF_6$ angenommen wird (Gl. 5–8).

$$HF + AsF_5 \rightarrow HAsF_6 \tag{5}$$

$$HAsF_6 + Cp_2VX_2 + AsF_5 \rightarrow [Cp_2VX_2]^+ [AsF_6]^- + HF + AsF_4$$
(6)

$$AsF_4 + Cp_2VX_2 + AsF_5 \rightarrow [Cp_2VX_2]^+ [AsF_6]^- + AsF_3$$
(7)

$$2 \operatorname{Cp}_2 V X_2 + 3 \operatorname{AsF}_5 \rightarrow 2 \left[\operatorname{Cp}_2 V X_2 \right]^+ \left[\operatorname{AsF}_6 \right]^- \operatorname{AsF}_3$$
(8)

$(X = Cl, AsF_6)$

EPR-Spektroskopie

Der im Rahmen der vorliegenden Arbeit dargestellte paramagnetische Vanadocen(IV)-Komplex 4 wurde EPR-spektroskopisch charakterisiert. Darüberhinaus berichten wir erstmals über das EPR-Spektrum von 2 sowie im Vergleich hierzu über das des SbF₆-Analogons 3.

Figur 1 zeigt die EPR-Spektren von 2 und 3, jeweils gemessen an polykristallinen Proben. Wie erwartet, zeigen beide Komplexe typische Spektren konzentrierter, paramagnetischer Systeme. Die Symmetrie am Vanadium erscheint in beiden

Fig. 1. EPR-Spektren von 2 und 3 (polykristalline Feststoffe).

Verbindungen axial, worauf jeweils die beiden beobachteten g-Werte hindeuten. Durch die starke Austausch-Wechselwirkung zwischen den Vanadocen-Ionen sind die Linien zusammengerückt und die Hyperfeinstruktur ist kollabiert.

Fig. 2. EPR-Spektrum von 4 (polykristalliner Feststoff).

Das EPR-Spektrum von 4 (Fig. 2) sieht denen von 2 und 3 recht ähnlich, das Signal ist sehr stark.

Eine Zusammenstellung der aus den Messungen an den polykristallinen Proben von 2, 3 und 4 experimentell erhaltenen g-Werte findet sich in Tabelle 1.

Komplex	<i>T</i> (K)	v (GHz)	H (G)	g "
2	293	9.7642	3487/3619	2.001/1.928
3	293	9.7638	3486/3628	2.001/1.923
4	290	9.2097	3294/3420	1.998/1.924

EPR-Daten der Komplexe 2-4

^a Berechnet nach: $g = h\nu/\beta$ H; $h = 6.6256 \cdot 10^{-27}$ erg s; $\beta = 9.2732 \cdot 10^{-21}$ erg G⁻¹ [6].

Fig. 4. ORTEP-Zeichnung der Komplexverbindung $[Cp_2VCl_2]^+ [AsF_6]^-$ (5).

Die Spektren der in THF gelösten Komplexe weisen jeweils mehr als eine Spezies auf, was anzeigt, daß eine Reaktion während des Lösungsvorganges stattgefunden hat. Um die Zuordnung der beobachteten Spektren zu vereinfachen, wurde der Versuch unternommen, die Komplexe in anderen Solvenzien wie z.B. Toluol, Diethylether und Methylenchlorid zu lösen. Es zeigt sich aber, daß sich nur 4 geringfügig in CH_2Cl_2 löst, in allen anderen Lösungsmitteln sind die Verbindungen unlöslich. Für das in THF gelöste 4 werden drei Spezies beobachtet (Fig. 3). Die bedeutendsten werden I und II genannt und sind nahezu identisch und erst bei hohem Feld aufgelöst. Das Spektrum der dritten Spezies (III) ist größtenteils verdeckt und zeigt nur drei beobachtbare Linien (Fig. 3). Wird 4 in CH_2Cl_2 gelöst, zeigt sich nur das Spektrum von II. Die Tatsache, daß II die einzige zu beob-

Zusammenstellung der isotropen g-Werte und der Hyperfein-Kopplungskonstanten a für sämtliche in den verdünnten THF-Lösungen von 2-4 beobachteten Spezies

Komplex	Lösungsmittel	8	a (gauss)	Zuordnung
2	THF	1.991 ± 0.001	76.6±0.5	$Cp_2V(THF)_2^{2+}$, I
		1.985 ± 0.001	81.0 ± 2.0	$Cp_2V(AsF_6)_2$, 2
3	THF	1.991 ± 0.001	76.6±0.5	$Cp_{2}V(THF)_{2}^{2+}$, I
		1.989 ± 0.002	78.0 ± 2.0	$Cp_2V(SbF_6)_2, 3$
		1.980 ± 0.001	116.0 ± 1.0	Vanadyl-Spezies, III
4	THF	1.991 ± 0.001	76.6±0.5	$Cp_2V(THF)_2^{2+}$, I
		1.994 ± 0.001	74.5 ± 0.5	$Cp_2VCl(AsF_6), 4$
		1.980 ± 0.002	114.0 ± 3.0	Vanadyl-Spezies, III

V-Cl1	229.3(3)	C12-C13	139(2)	
V-Cl2	229.8(3)	C13-C14	139(2)	
V-C11	229(1)	C14–C15	135(2)	
V-C12	231(1)	C21-C22	140(2)	
V-C13	232(1)	C21-C25	144(2)	
V-C14	235(1)	C22-C23	141(2)	
V-C15	226(1)	C23–C24	141(2)	
V-C21	228(1)	C24–C25	141(2)	
V-C22	230(1)	As-F1	168.4(8)	
VC23	232(1)	As-F2	168.0(9)	
V-C24	234(1)	As-F3	167(1)	
V-C25	227(1)	As-F4	173(1)	
C11-C12	138(2)	As-F5	167.2(7)	
C11-C15	138(2)	As-F6	166.1(8)	
Z1-V	198.6(5)	Z2V	196.5(5)	

Wichtige Bindungslängen (pm) in $[(C_5H_5)_3VCl_2][AsF_6]^a$

Tabelle 3

^a Z1: Centroid des Ringes C11 bis C15; Z2: Centroid des Ringes C21 bis C25.

achtende Spezies in CH_2Cl_2 -Lösung ist (Fig. 3) und I ebenso für 2 und 3 in THF beobachtet werden kann, rechtfertigt die folgende Zuordnung: I zu $[Cp_2V(THF)_2]^{2+}$ und II zu $Cp_2VCl(AsF_6)$. Die dritte Spezies besitzt eine recht große Hyperfeinkonstante, welche man normalerweise für Vanadyl-Komplexe in Lösung beobachtet. Deswegen wird sie hier einer aus 4 generierten Vanadyl-Spezies zugeordnet. 2 und 3 zeigen in THF zusätzlich zu Spezies I nur noch jeweils ein weiteres Spektrum. Dieses differiert nur geringfügig von I und wird den intakten Komplexen 2 und 3 zugeordnet (Tab. 2).

Strukturelle Aspekte

Die Röntgenstruktur zeigt 5 als ein Kationen-Anionen-Paar, in dem keine signifikanten Wechselwirkungen zu beobachten sind. Das Vanadiumatom im Kation ist von den beiden Cp-Ringen und den beiden Chloratomen tetraedrisch umgeben, während das Arsenatom annähernd oktaedrisch an sechs Fluoratome gebunden vorliegt (Fig. 4).

Die Abstände von Chlor zu Vanadium sind fast identisch (229.3(3) und 229.8(3) pm) und auch der Zentroid-Vanadiumabstand liegt für beide Cp-Ringe im gleichen Bereich (198.6(5) und 196.5(5) pm) (Tabelle 3).

Der wesentliche Unterschied des $[(C_5H_5)_2VCl_2]^+$ -Kations in 5 zum neutralen Cp'_2VCl_2 ($Cp' = \eta^5$ - C_5H_4Me) (A) kann in einer Verkürzung des V-Cl-Bindungsabstandes (d(V-Cl): A, 240 pm [7]; 5, 229 pm) unter gleichzeitiger Aufweitung des Cl-V-Cl-Winkels von 87.1° in A [7] auf 96.3° in 5 gesehen werden (Tabelle 4).

Die Cyclopentadienylringe im Kation sind planar (mit 2.1 pm maximaler Abweichung der Kohlenstoffatome von der idealen Ebene) und beide sind η^5 an das Zentralatom gebunden. Die C-C-Abstände sind typisch für sp^2 -Kohlenstoffatome, weisen jedoch gewisse Abweichungen wegen einiger erhöhter Temperaturfaktoren auf (135(2) bis 144(2) pm).

Die Arsen-Fluor-Abstände schwanken in einem gewissen Bereich (167(1) bis 173(1) pm) und auch die Winkel F-As-F sind um die idealen Oktaederwinkel von 180° (axial-axial) bzw. 90° (axial-äquatorial) leicht gestreut (175.7(9) bis 178.9(5)°

Wichtige Bindungswinkel (°) in $[(C_5H_5)_2VCl_2][AsF_6]$

Cl2-V-Cl1	96.3(1)	C14-V-C24	167.8(5)
C11-V-Cl1	131.1(4)	C15-V-C24	134.7(5)
C11-V-Cl2	113.2(4)	C21-V-C24	59.6(4)
C12-V-Cl1	128.7(4)	C22-V-C24	58.6(5)
C12-V-Cl2	80.4(2)	C23-C22-V	73.0(7)
C12-V-C11	34.8(4)	C23-C22-C21	109(1)
C13-V-Cl1	93.9(5)	V-C11-C15	71.3(7)
C13-V-Cl2	79.3(4)	C12-C11-C15	108(1)
C13-V-C11	57.4(5)	V-C12-C11	71.8(8)
C13-V-C12	34.9(5)	V-C12-C13	72.9(8)
C14-V-Cl1	76.2(3)	C11-C12-C13	106(2)
C14-V-Cl2	110.6(6)	V-C13-C12	72.2(8)
C14-V-C11	57.6(5)	V-C13-C14	74.0(9)
C14-V-C12	58.2(5)	C12-C13-C14	109(2)
C14-V-C13	34.7(6)	V-C14-C13	71.3(7)
C15-V-Cl1	96.6(4)	V-C14-C15	69.4(8)
C15-V-Cl2	135.2(4)	C13-C14-C15	106(1)
C15-V-C11	35.4(5)	V-C15-C11	73.3(7)
C15-V-C12	58.3(5)	V-C15-C14	76.7(8)
C15-V-C13	57.1(5)	C11-C15-C14	110(1)
C15-V-C14	33.9(6)	V-C21-C22	72.9(7)
C21-V-Cl1	110.5(3)	C23-V-C24	35.1(4)
C21-V-Cl2	134.1(3)	V-C11-C12	73.4(8)
C21-V-C11	76.2(4)	V-C22-C21	71.5(7)
C21-V-C12	107.4(5)	V-C21-C25	71.3(7)
C21-V-C13	132.3(5)	C22-C21-C25	107(1)
C21-V-C14	111.6(6)	C22-C23-V1	71.5(6)
C21-V-C15	79.2(5)	V-C23-C24	73.2(6)
C22-V-Cl1	79.0(3)	C22-C23-C24	107(1)
C22-V-Cl2	125.8(3)	C23-C24-V1	71.7(6)
C22-V-C11	109.3(4)	V-C24-C25	69.7(7)
C22-V-C12	142.7(5)	C23-C24-C25	109(1)
C22-V-C13	154.3(6)	V-C25-C24	74.8(7)
C22-V-C14	120.1(6)	C21-C25-C24	108(1)
C22-V-C15	98.8(5)	V-C25-C21	72.0(7)
C22-V-C21	35.6(4)	F1-As-F2	89.0(5)
Cl1-V-C23	80.9(3)	F1-As-F3	90.8(5)
Cl2-V-C23	90.3(3)	F1-As-F4	88.7(5)
C11-V-C23	133.7(5)	F1-As-F5	177.3(6)
C12VC23	149.6(5)	F1-As-F6	91.8(5)
C13-V-C23	167.9(5)	F2-As-F3	90.3(8)
C14-V-C23	150.4(5)	F2-As-F4	90.6(8)
C15-V-C23	134.1(5)	F2–As–F5	90.7(4)
C21-V-C23	59.8(4)	F2-As-F6	175.7(9)
C22-V-C23	35.5(4)	F3-As-F4	178.9(5)
Cl1-V-C24	114.0(3)	F3-As-F5	91.9(5)
Cl2-V-C24	75.8(3)	F3-As-F6	93.9(7)
C11-V-C24	110.6(5)	F4-As-F5	88.6(5)
C12VC24	114.6(5)	F4-As-F6	85.2(7)
C13-V-C24	144.1(6)	F5-As-F6	88.3(4)
Z1-V-Z2	132.2(3)		

bzw. 85.2(7) bis 93.9(7)°). Dies läßt sich durch die für Fluoratome typischen starken thermischen Schwingungen (hohe Temperaturfaktoren) begründen.

Mit der Anfertigung einer Röntgenstrukturanalyse von 5 gelang nicht nur die strukturelle Charakterisierung eines weiteren Vertreters aus der Familie der d° -konfigurierten Metallocendichloride des Typs $[Cp_2MCl_2]^{n+}$ (n = 0: Ti, Zr, Hf; n = 1: V(5), Nb; n = 2: MO, W [8]), sondern auch die vollständige Charakterisierung einer der bislang wenigen Vanadocen(V)-Komplexverbindungen.

Experimentelles

Die angewandten Arbeitstechniken haben wir bereits früher ausführlich beschrieben [9]. Wesentlich ist, daß gründlich getrocknete Apparaturen eingesetzt werden (AsF₅ hydrolysiert bereits mit Spuren von Wasser und bildet HF), hierzu eignet sich neben Ausflammen unter Vakuum (bei Glasgeräten) das Spülen der Apparaturen mit SF₄. AsF₅ (Air Products) wurde durch zweistufige Kondensation gereinigt, HF (Union Carbide) durch Lagerung über BiF₅ getrocknet.

Die Aufnahme der EPR-Spektren erfolgte an einem Bruker-Spektrometer des Typs ESP 300.

$Bis(\eta^{5}$ -cyclopentadienyl)dichlorovanadium(V)hexafluorarosenat (5)

Auf die gefrorene Lösung von 0.498 g (1.976 mmol) 1 in 20 ml SO₂ werden bei – 196°C volumetrisch zuerst 3.00 mmol AsF₅ und anschließend 0.37 mmol HF kondensiert. Die Reaktionsmischung wird innerhalb von 30 min auf Raumtemperatur erwärmt und 1 h bei Raumtemperatur nachgerührt. Nach Abpumpen sämtlicher flüchtiger Komponenten im dynamischen Vakuum wurden 0.85 g (98%) spektroskopisch reines 5 isoliert. Die Umkristallisation zur Züchtung geeigneter Einkristalle zur Strukturbestimmung erfolgte ebenfalls aus SO₂. ¹H-NMR (60 MHz, 20°C, SO₂, TMS): $\delta = 7.30$ ppm. ¹⁹F-NMR- und IR-Daten entsprechen den Literaturangaben [2].

$Bis(\eta^{5}$ -cyclopentadienyl)bis(hexafluoroarsenato)vanadium(V)hexafluoroarsenat (6)

Die Synthese von 6 erfolgte analog zu der von 5. 0.450 g (0.805 mmol) 2 werden mit 1.21 mmol AsF₅ und 0.20 mmol HF umgesetzt, wobei 0.57 g (95%) 6 erhalten werden. ¹⁹F-NMR-Daten entsprechen den Literaturangaben [2]. IR (CsI, $\tilde{\nu}$ in cm⁻¹): 3140m (ν – CH); 1452m, 1438 (ω -CC); 1132w, 1037w, 1020w (δ -CH); 860s (γ -CH); 700vs (ν -AsF); 395vs (δ -AsF); IR (Nujol, $\tilde{\nu}$ in cm⁻¹): 3130m (ν -CH); 1027w, 1015w (δ -CH); 860m, 855sh (γ -CH); 730s, 720sh, 678m (ν -AsF); 540m,br (ν -VF); 392sh, 380s (δ -AsF).

$Bis(\eta^5$ -cyclopentadienyl)chlorohexafluoroarsenatovanadium(IV) (4)

Auf eine gefrorene Lösung von 0.416 g (1.651 mmol) 1 in 25 ml SO₂ werden bei – 196 °C volumetrisch 2.50 mmol AsF₅ kondensiert. Nach Erwärmen auf Raumtemperatur innerhalb von 30 min und 1 h Nachrühren bei Raumtemperatur werden sämtliche flüchtigen Komponenten im dynamischen Vakuum abgepumpt. Nach Umkristallisation des verbleibenden rotbraunen Produktes aus SO₂ wurden 0.65 g (97%) analysenreines 4 isoliert. Anal. Gef.: C, 29.07; H, 2.45. C₁₀H₁₀AsClF₆V (405.49) ber.: C, 29.62; H, 2.49%. IR (KBr, $\tilde{\nu}$ in cm⁻¹): 3130m (ν -CH); 1442s, 1432s (ω -CC); 1128w, 1032w, 1013w (δ -CH); 848s (γ -CH); 700vvs (ν -AsF); 398vs (δ -AsF); 318w, 268w (ν -VCl).

Durch Umkristallisation von 5 aus SO₂ konnten geeignete Kristalle für eine Röntgenstrukturanalyse erhalten werden. Ein schwarzgrüner, nahezu luftstabiler stäbchenartiger Einkristall wurde auf die Dimensionen $0.30 \times 0.35 \times 0.28$ mm³ verkleinert. 5 kristallisiert monoklin mit den Gitterkonstanten a = 6.896(1), b =8.548(4), c = 12.044(4) Å und mit Z = 2 Formeleinheiten in der Elementarzelle. Die Gitterparameter wurden durch Kleinste-Quadrate Anpassung der $\pm 2\theta$ Werte von 25 Reflexen im Bereich $22.0 \le 2\theta \le 29.6^{\circ}$ erhalten. Alle kristallographischen Messungen wurden bei 110(5) K mit Mo- K_{α} Strahlung (Graphitmonochromator ($\alpha =$ 71.073 pm) durchgeführt. Im θ -2 θ Abtastverfahren wurden 1022 Reflexe im Bereich $1 \le 2\theta \le 45^{\circ}$ (0 \rightarrow 7, 0 \rightarrow 8, $-12 \rightarrow 12$) gemessen. Reflexe wurden in Abhängigkeit von der Streuintensität mit variabler Abtastzeit (max. 55 s) gemessen, wobei 2/3 der Zeit zum Abtasten des Peaks und je 1/6 der Zeit für den linken bzw. rechten Hintergrund verwendet wurden. Die gesamte Röntgenbestrahlungszeit betrug 20,0 Stunden. Drei Monitorreflexe wurden alle 1.0 Stunden gemessen, um Kristallzersetzung zu erkennen. Die maximale Fluktuation dieser Reflexe betrug -3.7%. Eine entsprechende Korrektur des Datensatzes (decay correction) wurde nicht vorgenommen. Drei weitere Reflexe kontrollierten die Orientierung des Kristalles nach jeweils

Tabelle 5

Kristalldaten und Angaben zu	r Kristallstrukturbestimmung v	on [(C ₅ H ₅) ₂ VCl ₂][AsF ₆]
------------------------------	--------------------------------	---

Summenformel	
Molmassa	$C_{10}\Pi_{10}ASCI_2\Gamma_6V$
Wollmasse .	440.94
Gitterkonstanten "	a = 6.896(1), b = 8.548(4), c = 12.044(4) A
	$\beta = 104.14(2)^{\circ}$
Zellvolumen	688.8(4) Å ³
Zahl der Formeleinheiten pro Zelle	2
Dichte (berechnet)	2.126 g/cm^3
Bestrahlungszeit	20.0 Stunden
Max. Fluktuation der Intensitätskontrollreflexe	- 3.7%
Decaykorrektur	keine
Linearer Absorptionskoeffizient	34.07 cm^{-1}
Absorptionskorrektur, Korrekturfaktoren	empirisch (DIFABS); min. 0.835, max. 1.401
F(000)	4227.97
Kristallsystem	monoklin, $P2_1$ (No. 4)
Meßgerät	Vierkreisdiffraktometer, Enraf-Nonius CAD4
Meßtemperatur	110(5) K
Meßbereich, Abtastmodus	$2 < 2\theta \leq 45^\circ, \ \omega - 2\theta$ -Scan
Zahl der gemessenen Reflexe	1022
Zahl der unabhängigen Reflexe	934
Zahl der beobachteten Reflexe	918, $F_0 \ge 3\sigma(F_0)$
Restelektronendichte	$1.01 \text{ e}/\text{Å}^3$ (0.62 Å von F1)
Verfeinerung ^b	Kleinste-Ouadrate-Verfeinerung
Anzahl der verfeinerten Parameter	180
max. shift/error	0.001
$R = \sum F_{0} - F_{c} / \sum F_{0} $	0.0384
$R_{w} = [\sum w(F_{o} - F_{c})^{2} / \sum wF_{o}^{2}]^{1/2}$	0.0499
w =	$3.6516 [\sigma^2(F_0) + 0.000285 \cdot F_0^2]$

^a Aus 25 Reflexen mit $22.0 \le 2\theta \le 29.6^{\circ}$. ^b Alle Nichtwasserstoffatome anisotrop verfeinert. Die Wasserstoffpositionen sind mit konstantem, isotropem Temperaturfaktor ($U_{iso} = 0.08 \text{ Å}^2$) berechnet (D(C-H) = 95 pm).

Atom	x	y	Z	Beq	
v	0.5945(2)	0.4694(2)	0.3094(1)	1.70	
Cl1	0.2899(4)	0.5129(5)	0.3485(2)	2.82	
Cl2	0.7475(4)	0.6903(4)	0.3985(2)	2.73	
Cl1	0.6784(23)	0.4150(16)	0.1411(9)	3.15	
C12	0.7186(23)	0.5711(17)	0.1631(11)	3.55	
C13	0.5362(30)	0.6428(19)	0.1570(10)	4.93	
C14	0.3844(21)	0.5319(27)	0.1299(9)	5.04	
C15	0.4750(21)	0.3935(20)	0.1254(10)	3.56	
C21	0.6708(18)	0.2093(15)	0.3230(10)	2.83	
C22	0.5496(19)	0.2389(13)	0.3985(9)	3.00	
C23	0.6490(19)	0.3427(15)	0.4846(8)	3.00	
C24	0.8380(18)	0.3736(14)	0.4650(10)	2.77	
C25	0.8514(17)	0.2974(14)	0.3634(10)	2.81	
As	0.0805(1)	0.0000(0)	0.1559(1)	2.08	
F1	0.3304(11)	0.9961(12)	0.1743(9)	6.47	
F2	0.0551(14)	0.9993(24)	0.0135(8)	9.56	
F3	0.0726(14)	0.8050(13)	0.1565(9)	7.04	
F4	0.0916(16)	1.2020(13)	0.1579(12)	9.87	
F5	-0.1673(11)	1.0130(14)	0.1368(6)	5.60	
F6	0.1022(15)	1.0149(19)	0.2959(7)	8.18	

Atomparameter in [(C₅H₅)₂VCl₂][AsF₆]

Tabelle 6

Anisotrope Temperaturfaktoren in [(C₅H₅)₂VCl₂][AsF₆]

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
v	0.019(1)	0.027(1)	0.020(1)	-0.002(1)	0.005(1)	-0.001(1)
Cl1	0.024(1)	0.043(2)	0.044(2)	-0.007(2)	0.014(1)	-0.002(2)
C12	0.037(2)	0.032(2)	0.036(2)	-0.008(1)	0.006(1)	-0.009(1)
C11	0.077(12)	0.037(8)	0.012(6)	0.004(5)	0.025(7)	0.020(7)
C12	0.050(9)	0.056(10)	0.034(7)	-0.002(6)	0.021(7)	-0.016(7)
C13	0.128(17)	0.042(9)	0.021(8)	0.009(6)	0.015(9)	0.024(11)
C14	0.046(8)	0.134(17)	0.010(6)	-0.006(9)	-0.002(6)	0.034(12)
C15	0.040(9)	0.081(12)	0.017(7)	-0.014(7)	0.013(6)	-0.019(8)
C21	0.046(8)	0.027(7)	0.039(6)	0.007(6)	0.014(6)	0.005(6)
C22	0.046(8)	0.032(7)	0.042(7)	0.016(6)	0.024(6)	0.006(6)
C23	0.064(10)	0.042(7)	0.006(5)	0.002(5)	-0.006(5)	-0.005(7)
C24	0.034(7)	0.035(7)	0.036(7)	0.000(6)	-0.001(6)	0.007(6)
C25	0.027(6)	0.038(7)	0.045(7)	0.004(6)	0.013(5)	0.013(6)
As	0.0281(6)	0.0250(7)	0.0271(6)	-0.0003(5)	0.0055(4)	0.0008(5)
F1	0.046(5)	0.056(5)	0.147(8)	-0.029(7)	0.011(5)	0.000(5)
F2	0.093(8)	0.215(15)	0.064(5)	0.009(10)	0.037(5)	0.066(11)
F3	0.077(8)	0.051(7)	0.153(11)	-0.006(6)	0.058(8)	-0.011(5)
F4	0.090(9)	0.026(6)	0.282(19)	0.006(7)	0.092(11)	0.012(5)
F5	0.052(5)	0.096(7)	0.071(5)	-0.046(6)	0.024(4)	-0.005(6)
F6	0.123(9)	0.134(11)	0.055(5)	0.001(8)	0.008(5)	0.047(11)

100 gemessenen Daten. Eine neue Orientierungsmatrix wurde automatisch durch Zentrierung von 25 Reflexen ermittelt, falls die Winkelabweichung eines der Orientierungsreflexe größer als 0.1° war. Die Intensitäten wurden unter Verwendung des SDP's einer Lorentz-, einer Polarisations- sowie einer empirischen Absorptionskorrektur (DIFABS, min. und max. Transition 0.835 und 1.401) unterzogen [10].

Die Bestimmung der möglichen Raumgruppen konnte durch Betrachtung der vorhandenen Auslöschungen auf die Raumgruppen $P2_1$ oder $P2_1/m$ (No. 4 oder No. 11 in International Tables of X-Ray Crystallography [11]) eingegrenzt werden. Verfeinerungsversuche in $P2_1$ führten zum Erfolg. Die Position des As-Atoms wurde aus einer Patterson Synthese (SHELXS86 [12]) bestimmt. Die berechnete Differenz-Fourier Synthese zeigte alle fehlenden Nichtwasserstoff-Atome. Wasserstoffpositionen wurden berechnet und mit konstanten, isotropen Temperaturfaktor dem Modell zugefügt. Die Anpassung aller Parameter erfolgte durch die Methode der "Kleinsten-Fehler-Quadrate"-Verfeinerung und minimisierte den Ausdruck $\Sigma w(|F_o| - |F_c|)^2$ ($w = 3.6516/(\sigma^2(F_o) + 0.000285 \cdot F_o^2)$). Die Verfeinerung konvergierte bei R = 0.0384. $R_w = 0.0499$ für 918 Strukturfaktoren mit $F_o > 3\sigma(F_o)$. Die relative Verschiebung Δ/σ im letzten Verfeinerungschritt war ≤ 0.001 . Die letzte Differenz-Fourier-Synthese zeigte eine maximale Restelektronendichte von 1.01 e/Å³ im Abstand von 62 pm zum F1.

Alle kristallographischen Messungen wurden auf einem Enraf-Nonius CAD4-Vierkreisdiffraktometer, ausgerüstet mit einer Tieftemperaturanlage, durchgeführt. Atomfaktoren für As, V, Cl, F und C wurden von Cromer und Mann [13], für H von Stewart, Davidson und Simpson [14] verwendet. Real- und Imaginärteil zur Korrektur der Atomfaktoren auf anormale Dispersion wurden von Cromer und Libermann [15] genommen. Alle Berechnungen erfolgten mit Hilfe der Programme SDP [10] und SHELX76 [16]. Figur 4 zeigt einen ORTEP-Plot des Moleküls mit der Atomnumerierung (Wasserstoffatome sind weggelassen worden) [17].

Angaben zur Kristallstrukturbestimmung sind in Tabelle 5 zusammengefaßt. Die Atompositionen und äquivalenten isotropen Temperaturfaktoren sind in Tabelle 6, die anisotropen Temperaturfaktoren in Tabelle 7, die berechneten Positionen der Wasserstoffatome in Tabelle 8, die Bindungsabstände und -Winkel schon früher in Tabelle 3 und 4 aufgeführt.

Atom	x	у	Z	
H11	0.7742	0.3367	0.1370	
H12	0.8459	0.6202	0.1794	
H13	0.5182	0.7510	0.1692	
H14	0.2449	0.5502	0.1176	
H15	0.4088	0.2953	0.1133	
H21	0.6397	0.1438	0.2573	
H22	0.4206	0.1956	0.3925	
H23	0.5975	0.3842	0.5448	
H24	0.9393	0.4360	0.5123	
H25	0.9608	0.3028	0.3286	

Wasserstoffparameter in [(C5H5)2VCl2][AsF6]

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit. Ferner danken wir dem Bundesminister für Bildung und Wissenschaft für die finanzielle Unterstützung und für ein Graduiertenstipendium (P.G.) im Rahmen des Graduiertenkollegs "Synthese und Strukturaufklärung niedermolekularer Verbindungen". Unser besonderer Dank gilt Herrn Professor Dr. H. Schumann für die Ermöglichung der Durchführung der Röntgenstrukturanalyse.

Literatur

- 1 P. Gowik und T. Klapötke, J. Organomet. Chem., 387 (1990) C27.
- 2 P. Gowik, T. Klapötke und J. Pickardt, Organometallics, 8 (1989) 2953.
- 3 P. Gowik, T. Klapötke und U. Thewalt, J. Organomet. Chem., 385 (1990) 345.
- 4 N. Burford, J. Passmore und J.C.P. Sanders, in J.F. Liebman und A. Greenberg (Hrsg.), Molecular Structure and Energetics, From Atoms to Polymers: Isoelectronic Analogies, Vol. 11, VCH Verlagsgesellfschaft, Weinheim, 1989, S. 53.
- 5 J. Passmore und T. Klapötke, Acc. Chem. Res., 22 (1989) 234.
- 6 P.B. Ayscough, in Electron Spin Resonance in Chemistry, Methuen & Co Ltd., London, 1967, S. 29.
- 7 J.F. Petersen und L.F. Dahl, J. Am. Chem. Soc., 97 (1975) 6422.
- 8 P. Gowik und T. Klapötke, J. Organomet. Chem., 398 (1990) 1.
- 9 P. Gowik und T. Klapötke, J. Organomet. Chem., 368 (1989) 35.
- 10 B.A. Frenz, Enraf-Nonius, SDP-Structure Determination Package, Version 3.0, Enraf-Nonius, Delft, 1985.
- 11 International Tables for X-ray Crystallography, Vol. 1, Kynoch Press (present distributer Kluwer Academic Publishers, Dordrecht), 1974.
- 12 G.M. Sheldrick, SHELXS86, Program for Crystal Structure Solution, Universität Göttingen, 1986.
- 13 D.T. Cromer und J.B. Mann, Acta Crystallogr., Sect. A, 24 (1968) 321.
- 14 R.F. Stewart, E.R. Davidson und W.T. Simpson, J. Chem. Phys., 42 (1965) 3175.
- 15 D.T. Cromer und D. Libermann, J. Chem. Phys., 53 (1970) 1891.
- 16 G.M. Sheldrick, SHELX76, Program for Crystal Structure Determination, University of Cambridge, England, 1976.
- 17 C.K. Johnson, ORTEP-II, Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA, 1976.